
RESEARCH ARTICLE

Dengue virus NS1 cytokine-independent

vascular leak is dependent on endothelial

glycocalyx components

Dustin R. Glasner, Kalani Ratnasiri, Henry Puerta-Guardo, Diego A. Espinosa,

P. Robert Beatty, Eva Harris*

Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley,

CA, United States of America

* eharris@berkeley.edu

Abstract

Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus.

Disease ranges from uncomplicated dengue to life-threatening disease, characterized by

endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV non-

structural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model

and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like

layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we

examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic

pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile

virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In

vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce

inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect

DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV

NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to

wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibi-

tors targeting molecules involved in glycocalyx disruption. Taken together, these data indi-

cate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of

inflammatory cytokines but dependent on endothelial glycocalyx components.

Author summary

Dengue is the most prevalent mosquito-transmitted disease in humans and a significant

public health issue worldwide. Severe dengue disease is characterized by vascular leak,

which can lead to shock and potentially death. We previously demonstrated that non-

structural protein 1 (NS1), the only protein secreted from dengue virus (DENV)-infected

cells, can both trigger vascular leak in mice when given systemically and increase perme-

ability in human pulmonary endothelial cells via disruption of the endothelial glycocalyx-

like layer, the molecular barrier that lines blood vessels. NS1 also triggers release of inflam-

matory cytokines from immune cells through activation of Toll-like receptor 4 (TLR4).
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Here, we explored the relative contributions of inflammatory molecules and the endothe-

lial glycocalyx-like layer to NS1-mediated pathogenesis. Using cultured human dermal

endothelial cells and mice genetically deficient for TLR4 or TNF-α receptor, we showed

inflammatory signaling is not required for direct DENV NS1-mediated vascular leak. In

contrast, inhibition of molecules involved in glycocalyx disruption blocked DENV NS1-

induced vascular leak both in mice and in vitro. Altogether, our results indicate that dis-

ruption of endothelial glycocalyx components but not production of inflammatory cyto-

kines is required for the direct action of DENV NS1 on endothelial cells and suggest

potential molecular targets for treatment of severe dengue disease.

Introduction

Dengue (DENV) is a mosquito-borne flavivirus that causes up to 390 million infections, 96

million cases of dengue, and ~500,000 hospitalizations annually. Infection with any of the 4

DENV serotypes (DENV1-4) results in a spectrum of disease from inapparent infection to

classic dengue fever (DF) to dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS),

characterized by vascular leakage and shock. The DENV positive-strand 10.7 kb RNA genome

encodes a polyprotein that is cleaved into 3 structural proteins and 7 non-structural proteins.

DENV non-structural protein 1 (NS1) is synthesized by infected cells as a monomer (48 kDa),

glycosylated in the ER, and released into the extracellular milieu as a hexamer (~310 kDa) [1–

3]. Secreted DENV NS1 circulates in the blood during acute illness, and serum NS1 levels cor-

relate with dengue disease severity, as does viral load (i.e., viremia) [4].

Under normal physiological conditions, the microvascular endothelium maintains a low

permeability to fluids and molecules [5]. Disruption of the endothelial barrier can result in

excessive leak across the endothelium, a phenomenon known as hyperpermeability. Clinically,

this manifests as vascular leakage, where fluid accumulates in tissues after extravasating from

the vasculature [5, 6]. Two of the primary determinants of endothelial barrier function are the

endothelial glycocalyx and intercellular junctional complexes, such as tight and adherens junc-

tions [7, 8]. The glycocalyx lines the luminal surface of the endothelium, protecting the under-

lying endothelial cells from shear forces and contributing to hemostasis, signaling, and blood

cell-endothelial cell interactions [9]. Disruption of the glycocalyx has been shown to lead to

vascular pathology and has been previously hypothesized to play a role in the pathogenesis of

severe dengue disease [10], and modulation of the glycocalyx under inflammatory conditions

is thought to contribute to various diseases [11].

DENV NS1 has been shown to play a role in viral replication [12, 13] and immune evasion

[14, 15]. We recently showed that DENV NS1 can directly induce endothelial hyperpermeabil-

ity in vitro and vascular leak in vivo in the absence of DENV infection, as well as lethally exac-

erbate an otherwise sublethal DENV infection [16]. We also demonstrated that DENV NS1

can disrupt the endothelial glycocalyx-like layer (EGL) in vitro through the activation of endo-

thelial sialidases and the cathepsin L/heparanase pathway [17]. Further, glycocalyx compo-

nents, such as heparan sulfate and chondroitin sulfate, have been shown to circulate at higher

levels in the sera of DENV-infected patients than healthy controls [18, 19]. Others recently

showed that NS1 can also act through Toll-like receptor 4 (TLR4) on mononuclear cells to

induce secretion of vasoactive cytokines, and systemic inoculation of NS1 alone leads to signif-

icant increases in circulating levels of inflammatory cytokines in our mouse model [16].

In this study, we sought to evaluate the relative contributions of cytokine-driven inflamma-

tory mechanisms and NS1-induced EGL degradation to NS1 pathogenesis of the endothelium.

Relative contributions to dengue NS1-induced vascular leak
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Using an in vitro model of endothelial permeability, we found that DENV NS1 triggers hyper-

permeability independently of the pro-inflammatory cytokines TNF-α and IL-6. In vivo, we

demonstrated that DENV NS1 induces localized vascular leak in the dermis of wild-type mice

and that this effect is specific to DENV NS1 and independent of TLR4 and TNF-α signaling.

Finally, we showed that DENV NS1-induced endothelial dysfunction is dependent on endo-

thelial sialidases, cathepsin L, and heparanase both in vitro and in vivo. Taken together, our

results indicate that DENV NS1 acts directly on the endothelium to induce vascular leak in
vivo that is dependent on components of the glycocalyx.

Results

DENV2 NS1 triggers localized vascular leak in the dorsal dermis of mice

In vivo, vascular permeability is often assessed by intravenous (IV) injection of small-molecule

dyes, such as the albumin-binding Evans Blue dye (EBD); extravasation into tissues is then

quantified by extracting dye in formamide and measuring absorbance at 620 nm. To measure

the induction of vascular leak by DENV NS1 in the dermal endothelium, we removed hair

from the dorsal side of wild-type C57BL/6 (B6) mice and administered a retro-orbital (RO)

injection of EBD and four intradermal (ID) injections: phosphate-buffered saline (PBS) as a

vehicle control, vascular endothelial growth factor (VEGF, 200 ng) as a positive control, and

DENV2 NS1 (7.5 μg and 15 μg) (Fig 1A). Two hours post-injection, the dorsal dermis of the

mice was removed, and equal areas of tissue were excised for EBD quantification. We found

that VEGF and 15 μg of DENV2 NS1 induced vascular leak at levels significantly higher than

PBS (p� 0.0001, p = 0.0085, respectively) (Fig 1C). These data demonstrate that DENV2 NS1

can induce vascular leak in the dermis of wild-type B6 mice.

To improve the sensitivity of the assay, we established a novel measure of vascular leak

using IV injection of dextran molecules labeled with a fluorophore (Alexa Fluor 680), which

can be quantified via fluorescent scanning. Similar to the traditional Evans Blue model, hair

was removed from the dorsal side of wild-type B6 mice, fluorescent dextran was delivered RO,

and the same four ID injections were administered as above (Fig 1B). Using this model, we

found that VEGF and both 7.5 μg and 15 μg of DENV2 NS1 induced vascular leak at levels sig-

nificantly higher than PBS (P� 0.0001, P = 0.0230, P� 0.0001, respectively) (Fig 1D). How-

ever, 15 μg of NS1 from West Nile Virus (WNV), a closely related flavivirus that causes

encephalitis, did not trigger vascular leak in the dermis of wild-type B6 mice (Fig 1D). NS1

from DENV1, 3, and 4 also induced vascular leak in our dermal model (S1 Fig). Additionally,

DENV2 NS1 was shown to induce vascular leak in the dermal endothelium of mouse ears

using both Evans Blue and fluorescent dextran (S2 Fig). Therefore, these data confirm our

observations using Evans Blue dye and demonstrate a more sensitive method for detecting

local vascular leak in vivo.

Inflammatory cytokines TNF-α and IL-6 are not involved in DENV2

NS1-induced endothelial hyperpermeability in vitro

In addition to the direct NS1-mediated hyperpermeability we showed in endothelial cells that

is due in part to disruption of the EGL [17], Modhiran et al. reported that DENV NS1 can trig-

ger release of vasoactive cytokines from peripheral blood mononuclear cells (PBMCs) via acti-

vation of TLR4 [20]. To determine whether inflammatory cytokines are involved in DENV2

NS1-mediated endothelial hyperpermeability in vitro, we first determined whether human der-

mal endothelial cells produce specific cytokines in response to DENV2 NS1. We stimulated

the human dermal microvascular endothelial cell line HMEC-1 with 5 μg/ml and 10 μg/ml of

Relative contributions to dengue NS1-induced vascular leak
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DENV2 NS1 and collected supernatant at 0, 1, 3, 6, 12, and 24 hours post-treatment. Untreated

HMEC-1 were used as a steady-state control, and HMEC-1 treated with 10 ng/ml or 100 ng/

ml of lipopolysaccharide (LPS) were used as a positive control. We found that HMEC-1 did

not produce IL-6 in response to DENV2 NS1 but did in response to both concentrations of

LPS in a dose-dependent manner (Fig 2A). HMEC-1 did not produce detectable levels of

TNF-α in response to either DENV2 NS1 or LPS (Fig 2B); LPS only stimulates production of

Fig 1. DENV2 NS1 triggers localized vascular leak in the dorsal dermis of mice. (A-D) Hair was removed from the dorsal dermis of

mice, and mice were allowed to recover for 3 days. On the day of the assay, retro-orbital injections of (A-B) Evans Blue dye (EBD) or

(C-D) Alexa Fluor 680-conjugated dextran were administered, followed by intradermal injections of PBS (black circles), 200 ng VEGF

(purple squares), 15 μg DENV2 NS1 (blue triangles), 7.5 μg DENV2 NS1 (green triangles), and 15 μg WNV NS1 (orange diamonds). The

dermis from each mouse was collected and processed two hours post-injection. (A) Representative image of mouse dorsal dermis

following Evans Blue assay. (B) EBD was extracted from tissue in formamide for 24 hours at 56˚C and quantified using a standard curve

of EBD (30.5 to 500,000 ng/ml) using linear regression analysis. Data represent quantified EBD from 8 animals. (C) Representative

image of mouse dorsal dermis following fluorescent dextran assay. (D) Dermises were scanned using a fluorescent detection system

(LI-COR Odyssey CLx Imaging System) at a wavelength of 700 nm, and extravasated fluorescent dextran was quantified in tissue using

Image Studio software (LI-COR Biosciences). Data represent the quantification of mean fluorescent intensity from mice in (C): PBS

(n = 9); VEGF (n = 7); DENV2 NS1–15 μg (n = 9); DENV2 NS1–7.5 μg (n = 9); WNV NS1 (n = 4). Data in (B) and (D) represent mean +/-

SEM and were collected from 3 independent experiments. An ordinary one-way ANOVA with multiple comparisons to the PBS group

using Dunnett’s multiple comparison test was used to determine significance of VEGF, DENV2 NS1, and WNV NS1. An unpaired,

parametric, two-tailed t-test was used to determine significance between 15 μg of DENV2 NS1 and 7.5 μg of DENV2 NS1. ns = not

significant, *P < 0.05, **P < 0.01, ****P < 0.0001.

https://doi.org/10.1371/journal.ppat.1006673.g001
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TNF-α from endothelial cells in the presence of a secondary inflammatory signal [21]. Addi-

tionally, IL-8, a chemokine known to play a role in the inflammatory response, was only pro-

duced in response to LPS and not DENV2 NS1 in HMEC-1 (Fig 2C). Similar results for IL-6,

TNF-α, and IL-8 were obtained when human pulmonary microvascular endothelial cells

(HPMEC) were studied (S3 Fig). This suggests that endothelial cells do not produce inflamma-

tory cytokines in response to DENV2 NS1 in vitro.

To further confirm that IL-6 and TNF-α are not involved in DENV2 NS1-induced endothe-

lial cell-intrinsic mechanisms of endothelial hyperpermeability, we used a Transwell model

that measures trans-endothelial electrical resistance (TEER) to evaluate the effect of anti-cyto-

kine monoclonal antibodies (mAbs) on DENV2 NS1-induced endothelial hyperpermeability

in HMEC-1 monolayers. We found that both recombinant human IL-6 and TNF-α signifi-

cantly induced endothelial hyperpermeability (P� 0.0001) and that addition of anti-IL-6 and

anti-TNF-α mAbs blocked this effect (P� 0.0001); however, anti-IL-6 and anti-TNF-α mAbs

did not affect DENV2 NS1-induced endothelial hyperpermeability (P = 0.1845, P = 0.1879,

respectively) (Fig 3A and 3B). Similar results were obtained when evaluating HPMEC as well

(S4 Fig). Taken together, these results suggest that IL-6 and TNF-α are not involved in the

direct action of DENV2 NS1 on the human endothelium in vitro.

Fig 2. HMEC-1 do not produce the inflammatory cytokines IL-6, TNF-α, or IL-8 in response to DENV2 NS1 stimulation in vitro. (A-C) HMEC-1

were stimulated with LPS (10 or 100 ng/ml; red squares and orange triangles, respectively) or DENV2 NS1 (5 or 10 μg/ml; dark blue triangles and light

blue diamonds, respectively), and supernatant was collected at 0, 1, 3, 6, 12, and 24 hours post-treatment. Untreated HMEC-1 monolayers were used as

a control (black circles). ELISAs for (A) IL-6, (B) TNF-α, and (C) IL-8 were performed on all samples. All data shown represent the mean +/- SEM and

were collected from two independent experiments. A repeated measure two-way ANOVA with multiple comparisons to the untreated group using

Dunnett’s multiple comparison test was used to determine significance of treatment with LPS (10 and 100 ng/ml) or DENV2 NS1 (5 and 10 μg/ml).

*P < 0.05, **P < 0.01, ****P < 0.0001.

https://doi.org/10.1371/journal.ppat.1006673.g002
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DENV2 NS1-induced vascular leak is independent of TLR4 and TNF-α
signaling in vivo

To follow up on our in vitro results and to assess the role of TLR4 in vivo, we used our murine

fluorescent dextran model of dermal vascular leak to evaluate the contributions of TLR4 and

TNF-α signaling to DENV2 NS1-induced vascular leak. In both TLR4- and TNF-α receptor

Fig 3. Inflammatory cytokines TNF-α and IL-6 are not involved in DENV2 NS1-induced endothelial hyperpermeability

in vitro. (A-B) Trans-endothelial electrical resistance (TEER) of HMEC-1 monolayers incubated with 5 μg/ml DENV2 NS1

(blue squares), 10 ng/ml recombinant cytokine ((A) IL-6, (B) TNF-α; purple diamonds), 100 ng/ml anti-cytokine mAbs ((A) IL-

6, (B) TNF-α; orange triangles), recombinant cytokine + specific mAb ((A) IL-6, (B) TNF-α; green diamonds), or DENV2 NS1

+ specific mAb ((A) IL-6, (B) TNF-α; red circles). The background signal was subtracted (using TEER values from a blank

Transwell), and data were normalized to untreated HMEC-1. All data shown represent the mean +/- SEM and were collected

from two independent experiments. Data represent two replicate Transwells per condition. A repeated measure two-way

ANOVA was used to determine the significance of anti-cytokine mAbs on DENV2 NS1-induced hyperpermeability in HMEC-1.

ns = not significant.

https://doi.org/10.1371/journal.ppat.1006673.g003
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(TNF-αR)-deficient B6 mice, we found that both 7.5 μg and 15 μg of DENV2 NS1 triggered

vascular leak at similar levels as observed in wild-type B6 mice, though knockout mice demon-

strated slightly higher levels of leak than wild-type mice across all conditions (Fig 4A and 4B).

To further investigate the role of TLR4 in DENV NS1 pathogenesis, we utilized a model of sys-

temic vascular leak in wild-type and TLR4-deficient B6 mice. Briefly, mice were injected IV

with 10 mg/kg of DENV2 NS1 or 10 mg/kg of ovalbumin as a protein control. Three days

post-injection, EBD was administered RO and allowed to circulate for 3 hours. Mice were then

euthanized, and tissues were harvested for EBD extraction. We found that similar amounts of

EBD extravasated into the lungs and liver of TLR4-deficient mice and wild-type B6 mice,

though the levels were slightly lower in Tlr4-/- mice, suggesting comparable levels of NS1-in-

duced vascular leak (S5 Fig). Further, when mice deficient in both TLR4 and interferon-α/β
receptor (IFNAR) were infected with DENV2, no significant differences were observed in

either morbidity or mortality when compared with IFNAR-deficient B6 mice, though a slight

delay in both morbidity and mortality were observed in doubly deficient mice (S6 Fig). These

data indicate that TLR4 and TNF-α are not substantially involved in the endothelial cell-spe-

cific mechanism of DENV2 NS1-induced vascular leak in vivo.

Fig 4. DENV2 NS1-induced vascular leak is independent of TLR4 and TNF-α signaling in vivo. (A-B) Hair was removed from the dorsal

dermis of (A-B) wild-type (n = 7), (A) Tlr4-/- (n = 3) and (B) TNF-αR-/- (n = 7) B6 mice, and mice were allowed to recover for 3 days. On the day of the

assay, retro-orbital injections of Alexa Fluor 680-conjugated dextran were administered, followed by intradermal injections of PBS (black circles),

200 ng VEGF (purple squares), 15 μg DENV2 NS1 (blue triangles), and 7.5 μg DENV2 NS1 (green triangles). The dermis from each mouse was

collected and processed two hours post-injection. Data represent quantification of mean fluorescent intensity from the dermis +/- SEM and were

collected from 2–3 independent experiments. The same wild-type B6 mice are used for comparison in both (A) and (B). An ordinary one-way

ANOVA with multiple comparisons to the PBS group using Dunnett’s multiple comparison test was used to determine significance of VEGF and

DENV2 NS1. An unpaired, parametric, two-tailed t-test was used to determine significance between wild-type and knockout mice for each

treatment group. ns = not significant, *P < 0.05, **P < 0.01, ****P < 0.0001.

https://doi.org/10.1371/journal.ppat.1006673.g004
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Inhibition of sialidases, cathepsin L, and heparanase prevents DENV2

NS1-induced vascular leak

We previously demonstrated that the EGL is an important determinant of endothelial dysfunc-

tion triggered by DENV2 NS1 in HPMEC. Specifically, human sialidases, cathepsin L, and

heparanase were implicated as enzymes responsible for degrading the EGL and whose expres-

sion and activation were triggered by DENV NS1. Further, we showed that sialic acid was

degraded and cathepsin L activity was increased following DENV2 NS1 treatment of HMEC-1

[17]. Here, we utilized the TEER system to evaluate the effect of specific inhibitors that target

sialidase (Zanamivir), cathepsin L (Cathepsin L Inhibitor), and heparanase (OGT 2115), on

DENV2 NS1-induced endothelial hyperpermeability of HMEC-1 in vitro. We found that all

three inhibitors partially abrogated the increased permeability observed following treatment

with DENV2 NS1 (P� 0.0001) (Fig 5A–5C). Further, a cocktail of all three inhibitors

completely eliminated hyperpermeability in vitro (P� 0.0001) (Fig 5D), reflecting our previ-

ous work with HPMEC [17]. These findings demonstrate that endothelial cell-intrinsic

enzymes contribute importantly to DENV2 NS1-induced endothelial hyperpermeability in
vitro.

Fig 5. Inhibition of sialidases, cathepsin L, and heparanase prevents DENV2 NS1-induced endothelial hyperpermeability in vitro. (A-D) Trans-

endothelial electrical resistance (TEER) of HMEC-1 monolayers incubated with 5 μg/ml DENV2 NS1 (blue squares), specific inhibitor alone ((A) Zanamivir,

100 μM, (B) Cathepsin L inhibitor, 10 μM, (C) OGT 2115, 1.0 μM, (D) inhibitor cocktail; purple diamonds), or DENV2 NS1 + specific inhibitors ((A) Zanamivir,

100 μM, (B) Cathepsin L inhibitor, 10 μM, (C) OGT 2115, 1.0 μM, (D) inhibitor cocktail; orange triangles). The background signal was subtracted (using

TEER values from a blank Transwell), and data were normalized to untreated HMEC-1. All data shown represent the mean +/- SEM and were collected from

two independent experiments with two replicate Transwells per condition. A repeated measure two-way ANOVA was used to determine the significance of

anti-cytokine mAbs on DENV2 NS1-induced hyperpermeability in HMEC-1. ****P < 0.0001.

https://doi.org/10.1371/journal.ppat.1006673.g005
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Additionally, we performed confocal microscopy on HMEC-1 monolayers to assess the

presence of glycocalyx components, including sialic acid, chondroitin sulfate, heparan sulfate,

and hyaluronic acid, and found that all components were expressed at high levels on the sur-

face of HMEC-1 (S7 Fig). Further, we found that DENV2 NS1 induced the degradation of

sialic acid, the upregulation of cathepsin L activity, and the shedding of heparan sulfate in

HMEC-1 at 6 hours post-treatment, and these effects could be prevented through the use of

the previously-mentioned inhibitor cocktail (Fig 6). These data provide additional support

that HMEC-1 express an EGL composed of known glycocalyx components.

Next, we sought to determine the relative contribution of glycocalyx components to vascu-

lar leak in vivo. Wild-type B6 mice were administered an intraperitoneal (IP) dose of a cocktail

containing the same sialidase, cathepsin L, and heparanase inhibitors used in vitro 6 hours

before and immediately preceding ID injections of DENV2 NS1. Experiments were then per-

formed as previously detailed. A separate group of mice was administered a combination of

DMSO, PBS, and water as a vehicle control. We found that mice receiving the inhibitor cock-

tail as opposed to the vehicle control demonstrated a significantly lower fold-change in vascu-

lar leak as compared to PBS when exposed to 15 μg of DENV2 NS1 (inhibitor cocktail: 0.917;

vehicle control: 2.08; P = 0.0038), and the data trended towards a decrease in fold-change

when exposed to 7.5 μg of NS1 (inhibitor cocktail: 0.848; vehicle control: 1.12) (Fig 7). VEGF-

induced vascular leak was also decreased with the inhibitor cocktail but not as strongly as

DENV2 NS1 (inhibitor cocktail: 1.57; vehicle control: 2.20; P = 0.0156). Taken together, these

data demonstrate that endothelial sialidases, cathepsin L, and heparanase strongly contribute

to the local vascular leak induced by DENV2 NS1 in the dermis of wild-type B6 mice.

Discussion

In this study, we demonstrate that DENV2 NS1 can directly trigger vascular leak in the dermis

of wild-type B6 mice in the absence of viral infection and that this effect is specific to DENV2

NS1 and was not observed with WNV NS1. In vivo, TLR4 and TNF-α did not contribute to

NS1-induced vascular leak in our dermal model, which reflects endothelial cell-intrinsic

NS1-triggered leak. Consistent with this observation, human dermal endothelial cells did not

produce TNF-α or IL-6 in response to DENV2 NS1 stimulation in vitro, nor was NS1-induced

endothelial hyperpermeability mediated by these cytokines. Finally, we show that inhibition of

endothelial sialidases, cathepsin L, and heparanase is sufficient to prevent vascular leak induc-

tion by DENV2 NS1 both in vitro and in vivo.

Endothelial glycocalyx components have not previously been experimentally shown to play

a role in dengue pathogenesis in vivo. Here, we showed that disruption of glycocalyx compo-

nents is responsible for the induction of vascular leak observed in the murine dermis by

DENV2 NS1. We were able to protect mice from local vascular leak using a combination of

Zanamivir, Cathepsin L Inhibitor, and OGT 2115, demonstrating that the activity of endothe-

lial sialidases, cathepsin L, and heparanase mediate the disruption of endothelial barrier func-

tion by DENV2 NS1 in vivo. These enzymes contribute to glycocalyx disruption via

degradation of sialic acid and trimming of heparan sulfate proteoglycans. Using our in vitro
HMEC-1 model of endothelial permeability, we demonstrated that inhibition of each enzyme

alone partially abrogated NS1-induced hyperpermeability, while the combination of all three

inhibitors completely protected endothelial monolayers. Our results are consistent with previ-

ous findings that demonstrated that NS1 induces endothelial hyperpermeability by increasing

expression of sialidases, cathepsin L, and heparanase in human pulmonary endothelial cells in
vitro [17]. These results suggest potential targets for novel therapeutics that inhibit enzymes
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Fig 6. DENV2 NS1 induces degradation of sialic acid, activation of cathepsin L, and shedding of heparan sulfate in HMEC-1 in vitro.

(A-D) HMEC-1 monolayers treated with 5 μg/ml of DENV2 NS1 (middle column) or 5 μg/ml of DENV2 NS1 and an inhibitor cocktail (Zanamivir,

100 μM; Cathepsin L Inhibitor, 10 μM; OGT 2115, 1.0 μM; right column). Untreated monolayers were used as a control (left column). Six hours

post-treatment, cells were stained for (B) sialic acid (WGA-A647, red; top row images), (C) cathepsin L activity (Magic Red Cathepsin L detection

kit, red; middle row images), or (D) heparan sulfate (Heparan Sulfate mAb clone F58-10E4, green; bottom row images) and imaged on a Zeiss

LSM 710 Axio Observer inverted fluorescence microscope equipped with a 34-channel spectral detector at 20x magnification. (A) Images were

acquired using the Zen 2010 software (Zeiss). Nuclei were stained with Hoechst (blue). Images shown at 20X; scale bar, 10 μM. Representative

images shown. (B-D) Quantification of MFI in Fig 6A.

https://doi.org/10.1371/journal.ppat.1006673.g006
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that contribute to degradation of glycocalyx components for the treatment of severe dengue

disease.

It has previously been shown that TLR4 is an important mediator of DENV NS1 pathogen-

esis, as NS1 activation of TLR4 on PBMCs leads to production of IL-6 and IL-8, cytokines that

have been shown to contribute to endothelial barrier dysfunction [20]. Therefore, we evaluated

the effect of DENV2 NS1 on local and systemic vascular leak in TLR4-deficient B6 mice and

found no significant differences in the levels of EBD and dextran extravasation in TLR4-defi-

cient and wild-type mice following NS1 inoculation, suggesting that NS1 induces acute vascu-

lar leak that is not dependent on TLR4. In addition, infection of mice doubly deficient in TLR4

and IFNAR with a lethal dose of DENV2 did not result in significant differences in morbidity

or mortality compared to IFNAR-deficient mice. However, slight differences were observed

between wild-type and TLR4-deficient mice in all assays. In our model of localized vascular

leak, levels of leak were marginally higher in Tlr4-/- mice, whereas levels were slightly lower in

our systemic vascular leak model. In our DENV infection model, morbidity and mortality

were both somewhat delayed in Ifnar-/- x Tlr4-/- B6 mice, though mice succumbed to infection

at the same rates. Modhiran et al. found that LPS-RS, a potent antagonist of TLR4, and an

anti-TLR4 antibody both protected HMEC-1 monolayers from DENV2 NS1-induced endo-

thelial hyperpermeability as measured by TEER [20]. These observations suggest that TLR4

does play a contributing role to NS1-induced vascular leak, but because substantial vascular

Fig 7. Inhibition of sialidases, cathepsin L, and heparanase prevents DENV2 NS1-induced endothelial

hyperpermeability in vivo. Hair was removed from the dorsal dermis of wild-type B6 mice, and mice were

allowed to recover for 3 days. On the day of the assay, mice received an intraperitoneal dose of inhibitor

cocktail (Zanamivir, Cathepsin L Inhibitor, and OGT 2115; 1 mg/ml of each inhibitor) 6 hours pre-assay and

then immediately preceding the start of the assay (n = 4; closed symbols). Control mice received injections of

DMSO, PBS, and water as a vehicle control (n = 3; open symbols). Retro-orbital injections of Alexa Fluor

680-conjugated dextran were then administered, followed by intradermal injections of PBS (black circles), 200

ng VEGF (purple squares), 15 μg DENV2 NS1 (blue triangles), and 7.5 μg DENV2 NS1 (green triangles). The

dermis from each mouse was collected and processed two hours post-injection. Data represent the fold

change of mean fluorescent intensity from VEGF and DENV2 NS1 injections to PBS injections. Data represent

mean +/- SEM and were collected from 2 independent experiments. Unpaired, parametric, two-tailed t-tests

were used to determine significance between inhibitor-treated and mock-treated groups. ns = not significant,

*P < 0.05, **P < 0.01.

https://doi.org/10.1371/journal.ppat.1006673.g007
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leak, morbidity, and mortality are still observed in the absence of TLR4, we conclude there are

additional, more critical drivers of NS1 pathogenesis.

Previously, we demonstrated that systemic administration of DENV2 NS1 resulted in sig-

nificantly elevated levels of IL-6 and TNF-α 72 hours post-injection [16]. We sought to evalu-

ate whether endothelial cells produce these inflammatory cytokines in response to DENV2

NS1 in the absence of PBMCs. We demonstrated that HMEC-1 did not produce IL-6, TNF-α,

or IL-8 in response to DENV2 NS1, although HMEC-1 produced high levels of IL-6 and IL-8

in response to the positive control, the TLR4 ligand LPS. Further, to evaluate the role of these

cytokines in our HMEC-1 model of endothelial permeability, we measured TEER in the pres-

ence of both DENV2 NS1 and IL-6- and TNF-α-specific mAbs. We demonstrated that

DENV2 NS1-induced endothelial hyperpermeability is independent of both IL-6 and TNF-α,

although HMEC-1 can respond to both cytokines, an effect that is prevented with blocking

antibodies. We then sought to determine the contribution of TNF-α to NS1-induced vascular

leak in vivo. Using TNF-αR-deficient B6 mice, we found that DENV2 NS1 triggered similar

levels of vascular leak in both knockout and wild-type mice. These results suggest that NS1

stimulation of endothelial cells does not result in the production of pro-inflammatory cyto-

kines and that any directly pathogenic effects of NS1 on the endothelium occur independently

of key endothelial cell-produced cytokines, further emphasizing the role of endothelial cell-

specific mechanisms such as glycocalyx component disruption and mislocalization of intercel-

lular junction proteins.

In humans, severe symptoms of vascular leak appear several days after the peak of NS1 anti-

genemia in blood has passed, suggesting a requirement for prolonged exposure to NS1 to

cause severe leak and presumably reflecting the cumulative effects and accumulation of NS1 in

target tissues. Our previous mouse model data, also requiring three days of exposure to NS1

delivered systemically before morbidity and mortality were observed [16], suggest that the

induction of systemic vascular leak caused by NS1 is cumulative over time in vivo. The NS1

dose that we used here in our in vivo model of localized vascular leak was meant to reflect the

cumulative effect of NS1 in tissues, allowing us to simulate the effects of NS1 on the endothe-

lium in a shorter time span. Overall, the endothelial-intrinsic mechanisms we observe follow-

ing NS1 inoculation in the dermis may be working in conjunction with NS1 activation of

TLR4 on the surface of PBMCs and release of inflammatory cytokines to contribute to sys-

temic vascular leak observed in both our previous findings and clinical manifestations of DHF

and DSS.

Clinically, DHF and DSS are both characterized by vascular leak and endothelial dysfunc-

tion in multiple organs. The lungs are particularly affected, with pulmonary edema represent-

ing a common complication in severe dengue disease. We have previously published a study

identifying the EGL as a required determinant of endothelial barrier function in human pul-

monary microvascular endothelial cells in vitro [17], and our in vitro results here further sup-

port that DENV2 NS1 triggers endothelial hyperpermeability in HPMEC in a cytokine-

independent manner in the absence of virus and non-endothelial cell types. Further, petechiae

are an additional sign of capillary fragility and leak in dengue disease in humans, and previous

reports have shown that DENV is absent at the site of rash and petechiae in dengue fever

patients [22], though DENV antigens have been found in skin biopsies [23]. Here, we demon-

strated the ability of DENV2 NS1 to trigger localized vascular leak in the absence of virus in

the mouse dermis, suggesting a potential link between DENV NS1 and formation of petechiae.

Combined with our results in HPMEC, our findings suggest that NS1 may be an important

contributor to vascular leak in various tissue sites during DENV disease.

The glycocalyx has been previously implicated in plasma leakage in DENV-infected

patients. Nguyen-Pouplin et al. performed dextran fractional clearance studies in a group of
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Vietnamese dengue patients with evidence of vascular leak and in healthy controls and found

that there was no difference in dextran clearance between infected and healthy patients, seem-

ingly contradictory results. However, their data suggest that the dextran administered for the

study may have helped stabilize the glycocalyx following loss of plasma proteins during DENV

infection, thereby restoring glycocalyx integrity and normal endothelial barrier function [10].

More recent studies have evaluated different glycocalyx components in patient sera during

acute DENV infection and found that serum levels of hyaluronic acid, heparan sulfate, chon-

droitin sulfate, and syndecan-1 are all elevated, suggesting disruption of the endothelial glyco-

calyx by DENV infection [18, 19].

Ascertainment that disruption of the endothelial glycocalyx is mediated by DENV NS1

entails direct visualization of the glycocalyx layer in vivo. As the glycocalyx is a delicate and

complex structure, this direct visualization requires challenging techniques, such as intravital

microscopy, two-photon microscopy, and electron microscopy, which have previously been

used to image the glycocalyx in live mice and in fixed murine tissues [24–27]. Further, though

cultured endothelial cells express key components of the glycocalyx on their surface, they do

not necessarily express a true glycocalyx structure in vitro. Thus, drawing definitive conclu-

sions regarding the glycocalyx and its role in dengue disease is difficult; however, we believe

our results support a critical role for glycocalyx components and thus implicitly for the glyco-

calyx in vascular leak, though further validation in vivo is necessary.

As we have previously speculated, we believe that DENV NS1 induces endothelial hyperper-

meability following its internalization by endothelial cells [17]. After NS1 binds to an as-yet

unidentified receptor, internalization may then facilitate NS1 interaction with cathepsin L

(which can then cleave heparanase into an active form) and the endothelial sialidase Neu1,

both of which are localized in lysosomal compartments [28, 29]. It is also possible that binding

and downstream signaling triggers activation of these enzymes, specifically Neu3, which is

localized to the plasma membrane [30]. Preliminary data from our laboratory suggests that

inhibition of endocytic pathways in endothelial cells may protect monolayers in vitro from

DENV NS1-induced hyperpermeability. Further research is required to fully elucidate the

mechanisms driving DENV NS1-related pathogenesis.

Finally, our model improves upon the existing Miles assay that uses Evans Blue dye as a

tracer for vascular leak. By using dextran conjugated to Alexa Fluor 680, we were able to

observe greater differences between groups in our model, as well as decreased variability as

compared to using EBD. Additionally, we are able to evaluate positive and negative controls

alongside experimental conditions in the same animal. These factors serve to decrease the total

number of mice required to achieve statistical significance of our data, saving on costs and

contributing to the overall goal of limiting animal numbers used in experiments. Additionally,

this method does not require excision of individual spots or extraction of dye but allows for

direct imaging of the skin on a fluorescent scanner, thereby decreasing the time spent process-

ing each animal and allowing for faster development and analysis of results. Compared to our

systemic models of vascular leak [16], the modified Miles assay facilitates the evaluation of the

direct and immediate effects of NS1 on the vascular endothelium, as ID injections deliver the

protein to a localized spot. Additionally, this allows for usage of substantially lower quantities

of NS1 protein. It is, however, possible that compounds delivered intradermally may interact

with resident dermal immune cells or the abluminal surface of the endothelium following

inoculation. Thus, results obtained in the intradermal assay should be validated using intrave-

nous delivery of NS1 in a systemic model of leak, as we have done here.

Taken together, these results contribute to the growing body of literature demonstrating a

critical role for NS1 in dengue pathogenesis, specifically in its contributions to directly patho-

genic effects on the vascular endothelium. We show that DENV2 NS1-induced endothelial
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barrier dysfunction is not related to inflammatory cytokines in a mouse model of dermal vas-

cular leak or in endothelial cells in vitro but that instead, specific endothelial enzymes that

degrade components of the endothelial glycocalyx layer are required. Overall, these findings

further illustrate the role of NS1 in the pathogenesis of severe dengue disease and highlight the

importance of the endothelial glycocalyx in vascular leak, suggesting targets for novel thera-

peutics in the treatment of DHF and DSS.

Materials and methods

Ethics statement

All in vivo experiments were performed strictly following the guidelines of the American Vet-

erinary Medical Association and the Guide for the Care and Use of Laboratory Animals from

the National Institutes of Health and were approved by the University of California (UC)

Berkeley Animal Care and Use Committee (protocol AUP-2014-08-6638).

Mice

Six-to-eight-week-old wild-type C57BL/6 (B6) mice were obtained from the Jackson Labora-

tory. Tlr4-/- and TNF-αR-/- B6 mice were originally obtained from Dr. Greg Barton (UC Berke-

ley) and the Jackson Laboratory, respectively. Ifnar-/- B6 were originally obtained from the

Jackson Laboratory. Tlr4-/- x Ifnar-/- B6 mice were generated at UC Berkeley by backcrossing

Tlr4-/- onto an Ifnar-/- B6 background 10 times. All mice were bred and maintained in specific

pathogen-free conditions at the animal facility at UC Berkeley. A mix of male and female six-

to-eight-week-old mice were used in all experiments. Trained and certified laboratory person-

nel performed anesthesia of mice via isoflurane inhalation and euthanasia of mice using expo-

sure to isoflurane followed by cervical dislocation.

Cell culture and viruses

The human dermal microvascular endothelial cell line HMEC-1 was kindly donated by Dr.

Matthew Welch (UC Berkeley) and propagated (passages 18–25) and maintained at 37˚C in

humidified air with 5% CO2 in MCDB 131 medium (Sigma) supplemented with 1% penicillin/

streptomycin (Life Technologies), 0.2% Epidermal Growth Factor (Life Technologies), 0.4%

hydrocortisone (Sigma), and 5% Fetal Bovine Serum (Corning). The human pulmonary

microvascular endothelial cell line HPMEC-ST1.6r (HPMEC) was kindly donated by Dr. J.C.

Kirkpatrick (Institute of Pathology, Johannes Gutenberg University, Germany) and grown as

previously described [17]. DENV2 D220 was generated in our laboratory from the parental

strain DENV2 PL046 [31]. Virus was propagated in the Aedes albopictus C6/36 cell line (Amer-

ican Type Culture Collection; ATCC) and titered by plaque assay on baby hamster kidney cells

(BHK21, clone 15).

Recombinant NS1 proteins

Recombinant DENV1 (Nauru/Western Pacific/1974), DENV2 (Thailand/16681/84), DENV3

(Sri Lanka D3/H/IMTSSA-SRI/2000/1266), DENV4 (Dominica/814669/1981), and WNV

(NY99) NS1 proteins, greater than 95% purity and certified to be free of endotoxin contami-

nants, were produced by the Native Antigen Company (Oxfordshire, United Kingdom) in

HEK293 cells at their facility and used in all experiments. NS1 preparations were also tested

using the Endpoint Chromogenic Limulus Amebocyte Lysate (LAL) QCL-1000 kit (Lonza)

and confirmed to be free of bacterial endotoxins [17].
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Recombinant proteins, monoclonal antibodies, and inhibitors

For staining of EGL components, the following monoclonal antibodies and lectins were used:

Wheat germ agglutinin (WGA) lectin conjugated to Alexa Fluor 647 (WGA-A647, Molecular

Probes) to stain N-acetyl neuraminic acid (sialic acid); Ab Heparan Sulfate, purified (clone

F58-10E4, Amsbio); anti-Chondroitin Sulfate antibody (CS-56, Abcam); anti-Hyaluronic acid

antibody (Abcam). Goat anti-mouse IgG conjugated to Alexa Fluor 647 (Abcam), donkey

anti-mouse IgM conjugated to Alexa Fluor 488 (Jackson), and donkey anti-sheep IgG conju-

gated to Alexa Fluor 568 (Abcam) were used as secondary detection antibodies in confocal

microscopy experiments. Vascular endothelial growth factor (VEGF; Sigma) was used as a pos-

itive control in in vivo dermal Miles assay experiments. Ovalbumin (Life Technologies) was

used as a negative control in in vivo systemic Miles assay experiments. Anti-Flavivirus group

antigen against the DENV envelope (E) protein (4G2, clone number D1-4G2-4-15; Absolute

Antibody) was used in antibody-dependent enhancement (ADE) infections in vivo. Recombi-

nant human TNF-α and recombinant human IL-6 (eBiosciences) were used in trans-endothe-

lial electrical resistance (TEER) assays. Anti-human TNF-α and anti-human IL-6 mAbs

(eBiosciences; clones MAb1 and MQ2-13A5, respectively) were used in anti-cytokine and

anti-NS1 TEER experiments. Selective inhibitors of sialidases (Zanamivir, Sigma), heparanase

(OGT 2115, Tocris), and cathepsin L (Cathepsin L Inhibitor, Santa Cruz Biotechnology) were

used in TEER assays and in mouse experiments at concentrations that do not affect cell viabil-

ity, animal welfare, or vascular leakage. Cell viability was determined using the Promega Cell-

Tox Green Cytotoxicity Assay following the manufacturer’s instructions.

Evans Blue dermal Miles assay

The effect of recombinant DENV2 NS1 protein on localized vascular leak in vivo was evaluated

using the Miles assay adapted for mouse skin as previously described [32]. Wild-type B6 mice

were shaved 3–4 days prior to each experiment using Wahl Show Pro Plus clippers, and hair

was further removed using Nair (Church & Dwight) and 70% ethanol. On the day of the assay,

mice were anesthetized with isoflurane and injected RO with EBD (0.5% in PBS, 150 μl;

Sigma). After 10 minutes, PBS (50 μl), VEGF (200 ng in 50 μl PBS), and DENV2 NS1 (15 μg or

7.5 μg in 50 μl PBS) were injected ID into distinct sites on the shaved dorsal skin of mice. Two

hours post-injection, mice were euthanized using isoflurane, and the dorsal dermis was

removed. A 13 mm diameter circular punch was used to mark the biopsy site surrounding the

locations of Evans Blue leakage, and sites were removed using a surgical scalpel and placed in

formamide for 24 hours at 56˚C. The absorbance of the extravasated dye was measured at 620

nm using a spectrophotometer. EBD concentration was calculated using a standard curve

(30.5 to 500,000 ng/ml) using linear regression analysis. Representative images were obtained

using an iPhone 5S (Apple).

Dextran-adapted dermal Miles assay

Dorsal hair was removed from mice as described above. On the day of the assay, mice were

anesthetized with isoflurane and injected ID with PBS (50 μl), VEGF (200 ng in 50 μl PBS),

and DENV2 NS1 (7.5 μg or 15 μg in 50 μl PBS) and/or WNV NS1 (15 μg in 50 μl PBS) into the

shaved back skin of the mouse. Immediately following ID injections, 200 μl of 10 kDa dextran

conjugated with Alexa Fluor 680 (1 mg/ml; Sigma) was delivered by RO injection. Two hours

post-injection, mice were euthanized using isoflurane, and the dorsal dermis was removed and

placed in Petri dishes. Tissues were scanned using a fluorescent detection system (LI-COR

Odyssey CLx Imaging System) at a wavelength of 700 nm, and leakage in a 13 mm diameter

circle surrounding the sites of injection was quantified using Image Studio software (LI-COR
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Biosciences). For experiments using inhibitors, compounds were administered IP in a total

volume of 200 μl 6 hours before the start of the assay and then immediately before beginning

the assay. All inhibitors were used at a final concentration of 1 mg/kg. A combination of

DMSO, PBS, and water was used as a vehicle control.

Intradermal injection of murine ears

Vascular leak in murine ears was measured as previously described [33]. Ears of isoflurane-

anesthetized mice were immobilized using cover slip forceps. A sterilized needle (30-gauge, 25

mm length, and 10˚-12˚ bevel), used with a 25 μl reusable glass microinjection syringe (Hamil-

ton), was inserted ~3 mm into the ventral side of the ear skin at a flat angle with the bevel

pointing up, and either 20 μl PBS or 7.5 μg DENV2 NS1 diluted in 20 μl PBS was slowly

injected. EBD (0.5% in PBS, 150 μl) or 200 μl of 10 kDa dextran conjugated with Alexa Fluor

680 (1 mg/ml) was immediately delivered by RO injection. EBD and dextran were allowed to

circulate for 30 minutes and 2 hours, respectively, and mice were then euthanized using iso-

flurane. For EBD assays, representative images were obtained using an iPhone 5S (Apple). For

dextran assays, ears were removed and imaged using a fluorescent detection system (LI-COR

Odyssey CLx Imaging System) at a wavelength of 700 nm.

Evans Blue systemic Miles assay

The effect of recombinant DENV2 NS1 protein on systemic vascular leak in vivo was evaluated

using the Miles assay as previously described [16]. Briefly, wild-type or Tlr4-/- B6 mice were

anesthetized using isoflurane and injected IV with either 10 mg/kg of ovalbumin or DENV2

NS1. Three days post-injection, mice were administered 200 μl of 0.5% EBD, and dye was

allowed to circulate for 3 hours before mice were euthanized and cardiac puncture was per-

formed. Tissues were collected and thoroughly dried in pre-weighed tubes. One ml of formam-

ide was then added and incubated at 56˚C for 48 hours. The absorbance of the extravasated

dye was measured at 620 nm using a spectrophotometer. EBD concentration was calculated

using a standard curve (30.5 to 500,000 ng/ml) using linear regression analysis.

DENV2 infection of mice

Mice deficient in the interferon-α/β receptor (Ifnar-/-) or Tlr4-/- x Ifnar-/-doubly deficient B6

mice were challenged IV with 107 plaque-forming units (PFU) of DENV2 D220 or 5 μg of 4G2

(anti-DENV E mAb) 20–24 hours prior to infection with 3 x 105 PFU of D220 (ADE). Animals

were monitored daily and DENV-induced morbidity and mortality were scored using a stan-

dardized scale [34].

Trans-endothelial electrical resistance (TEER)

The effect of recombinant DENV2 NS1 protein on endothelial permeability was evaluated by

measuring TEER in HMEC-1 grown on a 24-well Transwell polycarbonate membrane system

(Transwell permeable support, 0.4 μM, 6.5 mm insert; Corning Inc.) as previously described

[16, 17]. Briefly, TEER was measured in Ohms (Ω) at sequential 2-hour time-points following

the addition of test proteins using an Epithelial Volt Ohm Meter (EVOM) with “chopstick”

electrodes (World Precision Instruments). Untreated endothelial cells grown on Transwell

inserts were used as negative untreated controls, and inserts with medium alone were used for

blank resistance measurements. Relative TEER represents a ratio of resistance values (Ω) as

follows: (Ω experimental condition—Ω medium alone) / (Ω non-treated endothelial cells—Ω
medium alone). After 24 hours of treatment, 50% of upper and lower chamber media was
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replaced by fresh endothelial cell medium. For experiments using mAbs, antibodies were

added immediately before the addition of test proteins. For experiments using inhibitors, com-

pounds were added to the apical compartment of the Transwell 1 hour before the addition of

DENV NS1 protein.

Fluorescence microscopy

Microscopy was performed as previously described [17]. For imaging experiments, HMEC-1

were grown on coverslips coated with 0.2% gelatin (Sigma) and imaged on a Zeiss LSM 710

Axio Observer inverted fluorescence microscope equipped with a 34-channel spectral detector.

Images acquired using the Zen 2010 software (Zeiss) were processed and analyzed with ImageJ

software [35]. All RGB images were converted to grayscale, then mean grayscale values and

integrated density from selected areas were taken, along with adjacent background readings,

and plotted as mean fluorescence intensity (MFI). To assess the effect of DENV2 NS1 on integ-

rity of the EGL architecture, the distribution of sialic acid and heparan sulfate, as well as

cathepsin L activity, was examined on untreated confluent HMEC-1 monolayers and on

monolayers treated with DENV2 NS1 proteins (5 μg/ml) and fixed with 4% paraformaldehyde

(PFA) at 6 hours post-treatment. Confluent untreated HMEC-1 monolayers were also fixed

and stained for chondroitin sulfate and hyaluronic acid, normal constituents of the endothelial

glycocalyx. Primary antibodies were incubated overnight at 4˚C, and detection was performed

using secondary species-specific anti-IgG or anti-IgM antibodies conjugated to Alexa fluoro-

phores (488, 568 and 647).

Enzymatic activity assays

Cathepsin L activity in living cells was monitored using the Magic Red Cathepsin L detection

kit (Immunochemistry Technologies, Inc.) as previously described [17]. Briefly, confluent

HMEC-1 monolayers grown on coverslips were exposed to DENV2 NS1 protein (5 μg/ml),

and at 6 hours post-treatment, a cell membrane-permeant fluorogenic substrate MR-(Phe-

Arg)2, which contains the cresyl violet (CV) fluorophore branded as Magic Red (MR), was

added. Cultured cell monolayers expressing active cathepsin L catalyze the hydrolysis of the

two Phe-Arg target sequences, generating a red fluorescent species that can be detected by

immunofluorescence microscopy. Magic Red excites at 540–590 nm (590 nm optimal) and

emits at>610 nm (630 nm optimal).

ELISA

TNF-α, IL-6, and IL-8 levels were measured using ELISA assays following the manufacturer’s

instructions (Abcam).

Statistics

Statistical analyses were performed using GraphPad Prism 6 software, and all graphs were gen-

erated using Prism 6. For in vivo murine dermis experiments, an ordinary one-way ANOVA

with multiple comparisons to the PBS group using Dunnett’s multiple comparison test was

used to determine significance of VEGF, DENV2 NS1, and WNV NS1. An unpaired, paramet-

ric, two-tailed t-test was used to determine significance between individual groups. For DENV

infection experiments, comparison of survival rates was conducted using a nonparametric log-

rank (Mantel-Cox) test and graphed as Kaplan-Meier survival curves. For ELISA experiments,

a repeated measure two-way ANOVA with multiple comparisons to the untreated group using

Dunnett’s multiple comparison test was used to determine significance of treatment with LPS
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(10 and 100 ng/ml) or DENV2 NS1 (5 and 10 μg/ml). For TEER experiments, a repeated mea-

sure two-way ANOVA was used to determine the significance of treatments (i.e. anti-cytokine

mAbs or inhibitors) on DENV2 NS1-induced hyperpermeability in HMEC-1. Significance

was further confirmed using a repeated measure two-way ANOVA with multiple comparisons

to the untreated group using Dunnett’s multiple comparison test as well as an ordinary one-

way ANOVA with multiple comparisons to the PBS group using Dunnett’s multiple compari-

son test of area under the curve values for each group.

Supporting information

S1 Fig. Related to Fig 1. NS1 from DENV1-4 triggers localized vascular leak in the dorsal

dermis of mice. Representative image of mouse dorsal dermis following fluorescent dextran

assay. Hair was removed from the dorsal dermis of mice, and mice were allowed to recover for

3 days. On the day of the assay, retro-orbital injections of Alexa Fluor 680-conjugated dextran

were administered, followed by intradermal injections of PBS, 15 μg DENV1 NS1, 15 μg

DENV2 NS1, 15 μg DENV3 NS1, and 15 μg DENV4 NS1. The dermis from each mouse was

collected and processed two hours post-injection and scanned using a fluorescent detection

system (LI-COR Odyssey CLx Imaging System) at a wavelength of 700 nm, and images were

obtained using Image Studio software (LI-COR Biosciences).

(TIF)

S2 Fig. Related to Fig 1. DENV2 NS1 triggers localized vascular leak in the dermis of

mouse ears. (A-B) Wild-type B6 mice received intradermal injections with either PBS (right

ear) or 7.5 μg DENV2 NS1 (left ear) and, immediately after, intravenous injections of either

(A) Evans Blue dye (EBD) or (B) Alexa Fluor 680-conjugated dextran. (A) EBD was allowed to

circulate for 30 minutes and ears were photographed. (B) Dextran was allowed to circulate for

2 hours. Ears were removed and scanned using a fluorescent detection system (LI-COR Odys-

sey CLx Imaging System) at a wavelength of 700 nm, and images obtained using Image Studio

software (LI-COR Biosciences).

(TIF)

S3 Fig. Related to Fig 2. HPMEC do not produce the inflammatory cytokines IL-6, TNF-α,

or IL-8 in response to DENV2 NS1 stimulation in vitro. (A-C) HPMEC were stimulated

with LPS (0.1 or 10 μg/ml; red squares and orange triangles, respectively) or DENV2 NS1 (5 or

10 μg/ml; dark blue triangles and light blue diamonds, respectively), and supernatant was col-

lected at 0, 1, 3, 6, and 24 hours post-treatment. Untreated HPMEC monolayers were used as a

control (black circles). ELISAs for (A) IL-6, (B) TNF-α, and (C) IL-8 were performed on all

samples.

(TIF)

S4 Fig. Related to Fig 3. Inflammatory cytokines TNF-α and IL-6 are not involved in

DENV2 NS1-induced endothelial hyperpermeability in HPMEC in vitro. (A-B) Trans-

endothelial electrical resistance (TEER) of HPMEC monolayers incubated with 5 μg/ml

DENV2 NS1 (blue squares), 5 ng/ml recombinant cytokine ((A) IL-6, (B) TNF-α; purple dia-

monds), 50 ng/ml anti-cytokine mAbs ((A) IL-6, (B) TNF-α; orange triangles), recombinant

cytokine + specific mAb ((A) IL-6, (B) TNF-α; green diamonds), or DENV2 NS1 + specific

mAb ((A) IL-6, (B) TNF-α; red circles). The background signal was subtracted (using TEER

values from a blank Transwell), and data were normalized to untreated HPMEC. All data

shown represent the mean +/- SEM and were collected from two independent experiments.

Data represent two replicate Transwells per condition. A repeated measure two-way ANOVA

was used to determine the significance of anti-cytokine mAbs on DENV2 NS1-induced
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hyperpermeability in HPMEC. ns = not significant, �P< 0.05.

(TIF)

S5 Fig. Related to Fig 4. DENV2 NS1-induced systemic vascular leak in vivo is similar in

wild-type and TLR4-deficient mice. (A-B) Evans Blue dye (EBD) was injected intravenously

into wild-type or Tlr4-/- B6 mice 3 days after intravenous injection of 10 mg/kg DENV2 NS1

(wild-type: blue squares; Tlr4-/-: green triangles; n = 2 per genotype) or 10 mg/kg OVA (wild-

type: black circles; n = 2). The dye was allowed to circulate for 3 hours before mice were eutha-

nized. Tissues were harvested, and EBD was extracted in formamide and quantified in (A)

lungs and (B) liver by measuring absorbance at 620 nm against a standard curve.

(TIF)

S6 Fig. Related to Fig 4. DENV2 infection leads to similar levels of morbidity and mortality

in Ifnar-/- and Tlr4-/- x Ifnar-/- mice. (A-B) Ifnar-/- and Tlr4-/- x Ifnar-/- B6 mice were injected

intravenously with either 107 plaque-forming units (PFU) of DENV2 D220 (straight-lethal, SL;

Ifnar-/-: closed green triangles, n = 7; Tlr4-/- x Ifnar-/-: closed blue triangles, n = 9) or 5 μg of

4G2 (anti-DENV Envelope mAb) 20–24 hours prior to infection with 3 x 105 PFU of D220

(antibody-enhanced, ADE; Ifnar-/-: open green triangles, n = 7; Tlr4-/- x Ifnar-/-: open blue tri-

angles, n = 9). Mice were then monitored for (A) morbidity and (B) mortality for 10 days

post-infection. (A) Mice were observed twice per day and scored for morbidity on a scale of 1

to 5, with 1 being healthy and 5 being moribund. (B) Kaplan-Meier survival curve, with data

derived from 2 independent experiments. A nonparametric Mantel-Cox log rank test was used

to determine significance between groups.

(TIF)

S7 Fig. Related to Fig 5. HMEC-1 express canonical glycocalyx components on the cell sur-

face in vitro. HMEC-1 monolayers were grown for 5 days until confluent on glass cover slips

coated with 0.2% gelatin. Monolayers were stained for (A) sialic acid (stained with

WGA-A647, red), (B) chondroitin sulfate (stained with anti-Chondroitin Sulfate mAb CS-56,

red), (C) heparan sulfate (stained with Heparan Sulfate mAb clone F58-10E4, green), or (D)

hyaluronic acid (stained with anti-Hyaluronic Acid polyclonal antibody, yellow), and imaged

on a Zeiss LSM 710 Axio Observer inverted fluorescence microscope equipped with a 34-chan-

nel spectral detector at 20x magnification. (E) Merge of (B-D). Images were acquired using the

Zen 2010 software (Zeiss). Nuclei were stained with Hoechst (blue). Scale bar, 10 μM.

(TIF)
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